Exam 13: Introduction to Multiple Regression
Exam 1: Introduction and Data Collection131 Questions
Exam 2: Presenting Data in Tables and Charts178 Questions
Exam 3: Numerical Descriptive Measures148 Questions
Exam 4: Basic Probability146 Questions
Exam 5: Some Important Discrete Probability Distributions169 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions187 Questions
Exam 7: Sampling Distributions183 Questions
Exam 8: Confidence Interval Estimation176 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests167 Questions
Exam 10: Hypothesis Testing: Two Sample Tests160 Questions
Exam 11: Analysis of Variance141 Questions
Exam 12: Simple Linear Regression196 Questions
Exam 13: Introduction to Multiple Regression256 Questions
Exam 14: Time-Series Forecasting and Index Numbers203 Questions
Exam 15: Chi-Square Tests135 Questions
Exam 16: Multiple Regression Model Building92 Questions
Exam 17: Decision Making111 Questions
Exam 18: Statistical Applications in Quality and Productivity Management127 Questions
Exam 19: Further Non-Parametric Tests51 Questions
Select questions type
Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error Observations 40 ANOVA
df SS MS F Significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9
Coefficients Standard Error t Stat P -value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 7.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Instruction 13-16 Model 1,________ of the variation in the number of weeks a worker is unemployed due to a layoff can be explained by the six independent variables after taking into consideration the number of independent variables and the number of observations.
(Short Answer)
4.7/5
(34)
Instruction 13-6
One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y).
To provide its customers with information on that matter,a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Celsius (X1),the amount of insulation in cm (X2),the number of windows in the house (X3),and the age of the furnace in years (X4).Given below are the Microsoft Excel outputs of two regression models.
Model 1 Regression Statistics R Square 0.8080 Adjusted R Square 0.7568 Observations 20
ANOVA
df SS MS F Significance F Regression 4 169503.4241 42375.86 15.7874 2.96869-05 Residual 15 40262.3259 2684.155 Total 19 209765.75
Coefficients Standard Error t Stat P-value Lower 90.0\% Upper 90.0\% Intercept 421.4277 77.8614 5.4125 7.2-05 284.9327 557.9227 (Temperature) -4.5098 0.8129 -5.5476 5.58-05 -5.9349 -3.0847 (Insulation) -14.9029 5.0508 -2.9505 0.0099 -23.7573 -6.0485 (Windows) 0.2151 4.8675 0.0442 0.9653 -8.3181 8.7484 (Furnace Age) 6.3780 4.1026 1.5546 0.1408 -0.8140 13.5702 Model 2 Regression Statistics R Square 0.7768 Adjusted R Square 0.7506 Observations 20
ANOVA
df SS MS F Significance F Regression 2 162958.2277 81479.11 29.5923 2.9036-06 Residual 17 46807.5222 2753.384 Total 19 209765.75
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 489.3227 43.9826 11.1253 3.17-09 396.5273 582.1180 (Temperature) -5.1103 0.6951 -7.3515 1.13-06 -6.5769 -3.6437 (Insulation) -14.7195 4.8864 -3.0123 0.0078 -25.0290 -4.4099
-Referring to Instruction 13-6,what are the degrees of freedom of the partial F test for H0: ?3 = ?4 = 0 vs.H1: At least one ?j ? 0,j = 3,4?
(Multiple Choice)
4.8/5
(41)
Instruction 13-11
An econometrician is interested in evaluating the relation of demand for building materials to mortgage rates in Sydney and Melbourne.He believes that the appropriate model is
Y = 10 + 5X1 + 8X2
where X1 = mortgage rate in %
X2 = 1 if Sydney,0 if Melbourne
Y = demand in $100 per capita
-Referring to Instruction 13-11,the predicted demand in Sydney when the mortgage rate is 10% is ________ per capita.
(Short Answer)
4.8/5
(30)
An interaction term in a multiple regression model may be used when the relationship between X1 and Y changes for differing values of X2.
(True/False)
4.7/5
(33)
Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error Observations 40 ANOVA
df SS MS F Significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9
Coefficients Standard Error t Stat P -value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 7.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Instruction 13-16 Model 1,what is the p-value of the test statistic when testing whether age has any effect on the number of weeks a worker is unemployed due to a layoff,while holding constant the effect of all the other independent variables?
(Short Answer)
4.9/5
(30)
Instruction 13-15
A financial analyst wanted to examine the relationship between salary (in $1,000)and 4 variables: age (X1 = Age),experience in the field (X2 = Exper),number of degrees (X3 = Degrees),and number of previous jobs in the field (X4 = Prevjobs).He took a sample of 20 employees and obtained the following Microsoft Excel output:
SUMMARY
Regression Statistics
Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20
ANOVA
SS MS Signif Regression 4 4609.83164 1152.45791 224.160 0.0001 Residual 15 77.11836 5.14122 Total 19 4686.95000
Coeff StdError Stat -Value Intercept -9.611198 2.77988638 -3.457 0.0035 Age 1.327695 0.11491930 11.553 0.0001 Exper -0.106705 0.14265559 -0.748 0.4660 Degrees 7.311332 0.80324187 9.102 0.0001 Prevjobs -0.504168 0.44771573 -1.126 0.2778 Note: Adj.R Square = Adjusted R Square;Std.Error = Standard Error
-Referring to Instruction 13-15,the net regression coefficient of X2 is ________.
(Short Answer)
4.7/5
(36)
Instruction 13-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression.
SUMMARY
Regression Statistics
\begin{tabular} { l r } Multiple & \\ \hline Square & \end{tabular}
R Square
Adj. R Square
Std. Error
Observations 26
ANOVA
SS MS Siguif Regression 2 15579777040 7789888520 25.432 0.0001 Residual 23 7045072780 306307512 Total 25 22624849820
Coeff StdError Stat -value Intercept 15800.0000 6038.2999 2.617 0.0154 Capital 0.1245 0.2045 0.609 0.5485 Wages 7.0762 1.4729 4.804 0.0001 Note: Adj.R Square = Adjusted R Square;Std.Error = Standard Error
-Referring to Instruction 13-5,when the microeconomist used a simple linear regression model with sales as the dependent variable and wages as the independent variable,he obtained an r2 value of 0.601.What additional percentage of the total variation of sales has been explained by including capital spending in the multiple regression?
(Multiple Choice)
4.7/5
(35)
Instruction 13-3
An economist is interested to see how consumption for an economy (in $ billions)is influenced by gross domestic product ($ billions)and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY
Regression Statistics
Multiple R 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10
ANOVA
SS MS Signiff Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StaError Stat -Value Intercept -1.6335 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 Note: Adj.R Square = Adjusted R Square;Std.Error = Standard Error
-Referring to Instruction 13-3,one economy in the sample had an aggregate consumption level of $4 billion,a GDP of $6 billion,and an aggregate price level of 200.What is the residual for this data point?
(Multiple Choice)
4.9/5
(29)
Instruction 13-12
An automotive engineer would like to be able to predict automobile fuel economy.She believes that the two most important characteristics that affect economy are engine power and the number of cylinders (4 or 6)of a car.She believes that the appropriate model is
Y = 40 - 0.05X1 + 20X2 - 0.1X1X2
where X1 = engine power
X2 = 1 if 4 cylinders,0 if 6 cylinders
Y = economy expressed as kilometres.
-Referring to Instruction 13-12,the predicted number of kilometres for a 200 engine power,4-cylinder car is ________.
(Short Answer)
4.9/5
(34)
Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error Observations 40 ANOVA
df SS MS F Significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 79.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Instruction 13-16 Model 1,you can conclude that,holding constant the effect of the other independent variables,the number of years of education received has no impact on the mean number of weeks a worker is unemployed due to a layoff at a 10% level of significance if all you have is the information on the 95% confidence interval estimate for ?2.
(True/False)
4.9/5
(40)
Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error Observations 40 ANOVA
df SS MS F Significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 79.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Instruction 13-16 Model 1,there is sufficient evidence that at least one of the explanatory variables is related to the number of weeks a worker is unemployed due to a layoff at a 10% level of significance.
(True/False)
4.8/5
(30)
Instruction 13-8
You worked as an intern at We Always Win Car Insurance Company last summer.You notice that individual car insurance premium depends very much on the age of the individual,the number of traffic tickets received by the individual,and the population density of the city in which the individual lives.You performed a regression analysis in Microsoft Excel and obtained the following information:
Regression Analysis Regression Statistics Multiple R 0.63 R Square 0.40 Adjusted R Square 0.23 Standard Error 50.00 Observations 15.00
ANOVA
df SS MS F Significance F Regression 3 5994.24 2.40 0.12 Residual 11 27496.82 Total 45479.54
Coefficients Standard t Stat P-value Lower 99.0\% Upper 99.0\% Intercept Error AGE 123.80 48.71 2.54 0.03 -27.47 275.07 TICKETS -0.82 0.87 -0.95 0.36 -3.51 1.87 DENSITY 21.25 10.66 1.99 0.07 -11.86 54.37 -3.14 6.46 -0.49 0.64 -23.19 16.91
-Referring to Instruction 13-8,to test the significance of the multiple regression model,the null hypothesis should be rejected while allowing for 1% probability of committing a Type I error.
(True/False)
4.9/5
(42)
Instruction 13-13
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily average of the percentage of students attending class (% Attendance),average teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable,
X1 = % Attendance,X2 = Salaries and X3 = Spending:
Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47
ANOVA
df SS MS F Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153
-Referring to Instruction 13-13,there is sufficient evidence that instructional spending per pupil has an effect on percentage of students passing the proficiency test,while holding constant the effect of all the other independent variables at a 5% level of significance.
(True/False)
4.8/5
(34)
Instruction 13-3
An economist is interested to see how consumption for an economy (in $ billions)is influenced by gross domestic product ($ billions)and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY
Regression Statistics
Multiple R 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10
ANOVA
SS MS Signiff Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StaError Stat -Value Intercept -1.6335 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 Note: Adj.R Square = Adjusted R Square;Std.Error = Standard Error
-Referring to Instruction 13-3,one economy in the sample had an aggregate consumption level of $3 billion,a GDP of $3.5 billion,and an aggregate price level of 125.What is the residual for this data point?
(Multiple Choice)
4.7/5
(29)
The variation attribuInstruction to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by
(Multiple Choice)
4.8/5
(27)
Instruction 13-9
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in kilograms).Two variables thought to effect weight-loss are client's length of time on the weight loss program and time of session.These variables are described below:
Y = Weight-loss (in kilograms)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session,0 if not
X3 = 1 if afternoon session,0 if not (Base level = evening session)
Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:
Y = β0 + β1X1 + β2X2 + β3X3 + β4X1X2 + β5X1X3 + ε
Partial output from Microsoft Excel follows:
Regression Statistics
Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12
ANOVA
F=5.41118 Significance F=0.040201 Intercept Coeff StdError t Stat P -value Length 0.089744 14.127 0.0060 0.9951 Morn Ses 6.22538 2.43473 2.54956 0.0479 Aft Ses 2.217272 22.1416 0.100141 0.9235 Length*Morn Ses 11.8233 3.1545 3.558901 0.0165 Length*Aft Ses 0.77058 3.562 0.216334 0.8359 -0.54147 3.35988 -0.161158 0.8773
-Referring to Instruction 13-9,what null hypothesis would you test to determine whether the slope of the linear relationship between weight-loss (Y)and time in the program (X1)varies according to time of session?
(Multiple Choice)
4.9/5
(42)
Instruction 13-12
An automotive engineer would like to be able to predict automobile fuel economy.She believes that the two most important characteristics that affect economy are engine power and the number of cylinders (4 or 6)of a car.She believes that the appropriate model is
Y = 40 - 0.05X1 + 20X2 - 0.1X1X2
where X1 = engine power
X2 = 1 if 4 cylinders,0 if 6 cylinders
Y = economy expressed as kilometres.
-Referring to Instruction 13-12,the fitted model for predicting economy for 4-cylinder cars is ________.
(Multiple Choice)
4.9/5
(37)
Instruction 13-3
An economist is interested to see how consumption for an economy (in $ billions)is influenced by gross domestic product ($ billions)and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY
Regression Statistics
Multiple R 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10
ANOVA
SS MS Signiff Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StaError Stat -Value Intercept -1.6335 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 Note: Adj.R Square = Adjusted R Square;Std.Error = Standard Error
-Referring to Instruction 13-3,to test whether gross domestic product has a positive impact on consumption,the p-value is
(Multiple Choice)
4.8/5
(45)
Instruction 13-13
The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily average of the percentage of students attending class (% Attendance),average teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable,
X1 = % Attendance,X2 = Salaries and X3 = Spending:
Regression Statistics Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square Standard 10.4570 Error Observations 47
ANOVA
df SS MS F Significance F Regression 3 7965.08 2655.03 24.2802 0.0000 Residual 43 4702.02 109.35 Total 46 12667.11
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -753.4225 101.1149 -7.4511 0.0000 -957.3401 -549.5050 \% Attendance 8.5014 1.0771 7.8929 0.0000 6.3292 10.6735 Salary 0.000000685 0.0006 0.0011 0.9991 -0.0013 0.0013 Spending 0.0060 0.0046 1.2879 0.2047 -0.0034 0.0153
-Referring to Instruction 13-13,what is the p-value of the test statistics when testing whether instructional spending per pupil has any effect on percentage of students passing the proficiency test,taking into account the effect of all the other independent variables?
(Short Answer)
4.9/5
(34)
Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
Regression Statistics Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square Standard 18.4861 Error Observations 40 ANOVA
df SS MS F Significance F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 22325.9
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 79.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Instruction 13-16 Model 1,you can conclude that,holding constant the effect of the other independent variables,there is a difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is married and one who is not at a 10% level of significance if you use only the information of the 95% confidence interval estimate for ?4.
(True/False)
4.9/5
(39)
Showing 221 - 240 of 256
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)