Exam 10: Basic Regression Analysis With Time Series Data

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Economic time series are outcomes of random variables.

Free
(True/False)
4.8/5
(41)
Correct Answer:
Verified

True

The model: Yt = The model: Y<sub>t</sub> =   <sub>0</sub> +   <sub>1</sub>c<sub>t</sub> + u<sub>t</sub>, t = 1,2,……., n is an example of a(n): 0 + The model: Y<sub>t</sub> =   <sub>0</sub> +   <sub>1</sub>c<sub>t</sub> + u<sub>t</sub>, t = 1,2,……., n is an example of a(n): 1ct + ut, t = 1,2,……., n is an example of a(n):

Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
Verified

B

With base year 1990, the index of industrial production for the year 1999 is 112. What will be the value of the index in 1999, if the base year is changed to 1982 and the index measured 96 in 1982?

Free
(Multiple Choice)
4.7/5
(26)
Correct Answer:
Verified

B

If an explanatory variable is strictly exogenous it implies that:

(Multiple Choice)
4.9/5
(30)

Adding a time trend can make an explanatory variable more significant if:

(Multiple Choice)
4.9/5
(35)

If If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​ 1 > 0, then yt in the linear function of time E(yt) = If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​ 0 + If   <sub>1</sub> > 0, then y<sub>t </sub><sub>​</sub>in the linear function of time E(y<sub>t</sub>) =   <sub>0</sub> +   <sub>1</sub>t displays a(n):​ 1t displays a(n):​

(Multiple Choice)
4.7/5
(29)

Which of the following is an assumption on which time series regression is based?

(Multiple Choice)
4.7/5
(38)

A seasonally adjusted series is one which:

(Multiple Choice)
4.9/5
(32)

​Which of the following rules out perfect collinearity among the regressors?

(Multiple Choice)
4.7/5
(40)

​When a series has the same average growth rate from period to period, then it can be approximated by an exponential trend.

(True/False)
4.9/5
(29)

A stochastic process refers to a:

(Multiple Choice)
4.7/5
(32)

Which of the following correctly identifies a difference between cross-sectional data and time series data?

(Multiple Choice)
4.8/5
(32)

A static model is postulated when:

(Multiple Choice)
4.7/5
(33)

Refer to the following model. yt = Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 0 + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 0st + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 1st-1 + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 2st-2 + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 3st-3 + ut Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 0 + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 1 + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 2 + Refer to the following model. y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub>   <sub>0</sub> +   <sub>1</sub> +   <sub>2</sub> +   <sub>3</sub> represents: 3 represents:

(Multiple Choice)
4.9/5
(27)

Time series regression is based on series which exhibit serial correlation.

(True/False)
4.7/5
(34)

Price indexes are necessary for turning a time series measured in real value into nominal value.

(True/False)
4.9/5
(30)

The sample size for a time series data set is the number of:

(Multiple Choice)
4.9/5
(40)

In a static model, one or more explanatory variables affect the dependent variable with a lag.

(True/False)
4.7/5
(36)

Dummy variables can be used to address the problem of seasonality in regression models.

(True/False)
4.8/5
(34)

Refer to the following model yt = Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n): 0 + Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n): 0st + Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n): 1st-1 + Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n): 2st-2 + Refer to the following model y<sub>t</sub> =   <sub>0</sub> +   <sub>0</sub>s<sub>t</sub> +   <sub>1</sub>s<sub>t-1</sub> +   <sub>2</sub>s<sub>t-2</sub> +   <sub>3</sub>s<sub>t-3</sub> + u<sub>t</sub> This is an example of a(n): 3st-3 + ut This is an example of a(n):

(Multiple Choice)
4.8/5
(29)
Showing 1 - 20 of 24
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)