Solved

Given the Following Risk Solver Platform (RSP) Sensitivity Output How

Question 62

Short Answer

Given the following Risk Solver Platform (RSP) sensitivity output how much does the objective function coefficient for X2 have to increase before it enters the optimal solution at a strictly positive value?
 Final Reduced  Objective  Allowable  Allowable  Cell  Name  Value  Cost  Coefficient  Increase  Decrease $ B$4X19.52021001E+30350$C$4X20500.01899.99500.011E+30$D$4X310790105021037501\begin{array}{llrrrrr}&&\text { Final} & \text { Reduced } & \text { Objective } & \text { Allowable } & \text { Allowable }\\\text { Cell } & \text { Name } & \text { Value } & \text { Cost } & \text { Coefficient } & \text { Increase } & \text { Decrease } \\\hline \$ \mathrm{~B} \$ 4 & \mathrm{X} 1 & 9.52 & 0 & 2100 & 1 \mathrm{E}+30 & 350 \\\$ \mathrm{C} \$ 4 & \mathrm{X} 2 & 0 & -500.01 & 899.99 & 500.01 & 1 \mathrm{E}+30 \\\$ \mathrm{D} \$ 4 & \mathrm{X} 3 & 1079 & 0 & 1050 & 210 & 37501\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions