Solved

Consider the Following Linear Programming Model and Risk Solver Platform

Question 64

Essay

Consider the following linear programming model and Risk Solver Platform (RSP) sensitivity output. What is the optimal objective function value if the RHS of the first constraint increases to 18?
MAX:7X1+4X2 Subject ta: 2X1+X210X1+X2102X1+5X240X1X20\begin{array} { l l } \operatorname { MAX } : & 7 \mathbf { X } _ { 1 } + 4 \mathbf { X } _ { \mathbf { 2 } } \\\text { Subject ta: } & 2 \mathbf { X } _ { 1 } + \mathbf { X } _ { \mathbf { 2 } } \leq 10 \\& \mathbf { X } _ { 1 } + \mathbf { X } _ { \mathbf { 2 } } \leq 10 \\& 2 \mathbf { X } _ { 1 } + 5 \mathbf { X } _ { \mathbf { 2 } } \leq 40 \\& \mathbf { X } _ { 1 } \mathbf { X } _ { \mathbf { 2 } } \geq \mathbf { 0 }\\\end{array} Changing Calls\text {Changing Calls}
 FinalReduced Objective Allowable Allowable  Cell  Name  Value  Cost  Coefficient  Increase  Decrease $ B$4 Number to make: X160713$C$4 Number to make: X240430.5\begin{array}{llrrrrr}&&\text { Final} &\text {Reduced }&\text {Objective }&\text {Allowable}&\text { Allowable }\\\text { Cell } & \text { Name } & \text { Value } & \text { Cost } & \text { Coefficient } & \text { Increase } & \text { Decrease } \\\hline \$ \mathrm{~B} \$ 4 & \text { Number to make: } \mathrm{X} 1 &6& 0 & 7& 1& 3\\\$ \mathrm{C} \$ 4 & \text { Number to make: } \mathrm{X} 2 & 4 & 0 &4 &3 & 0.5\\\end{array}

Constraints\text {Constraints}
 Final Shadow Constraint Allowable Allowable  Cell  Name  Value  Price  R.H. Side  Increase  Decrease $D$8 Used 1631642.67$D$9 Used 1011012$D$10 Used 320401E+308\begin{array}{llrrrrr}&&\text { Final } &\text {Shadow} &\text { Constraint } &\text {Allowable} &\text { Allowable }\\\text { Cell } & \text { Name } & \text { Value } & \text { Price } & \text { R.H. Side } & \text { Increase } & \text { Decrease } \\\hline \$ \mathrm{D} \$ 8 & \text { Used } & 16&3 & 16&4&2.67 \\\$ \mathrm{D} \$ 9 & \text { Used } & 10 & 1&10 & 1 & 2 \\\$ \mathrm{D} \$ 10 & \text { Used } & 32& 0 & 40 & 1 E+30 & 8\end{array}


Correct Answer:

verifed

Verified

Shadow price of first constrai...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions