Solved

Refer to the Following Computer Output from Estimating the Parameters

Question 18

Multiple Choice

Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}
-The nonlinear relation can be transformed into the following linear regression model:


A) Y=ln(aRbScTd) Y = \ln \left( a R ^ { b } S ^ { c } T ^ { d } \right)
B) lnY=ln(aRbScTd) \ln Y = \ln \left( a R ^ { \mathrm { b } } S ^ { \mathrm { c } } T ^ { \mathrm { d } } \right)
C) lnY=lnalnRlnSlnT\ln Y = \ln a \cdot \ln R \cdot \ln S \cdot \ln T
D) lnY=lna+blnR+clnS+dlnT\ln Y = \ln a + b \ln R + c \ln S + d \ln T

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions