Solved

Refer to the Following Nonlinear Model Which Relates W to P

Question 19

Multiple Choice

Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}
-The nonlinear relation can be transformed into the following linear regression model:


A) W=ln(aPbQcRh) W = \ln \left( a P ^ { b } Q ^ { c } R ^ { \mathrm { h } } \right)
B) lnW=ln(aPbQcRd) \ln W = \ln \left( a P ^ { \mathrm { b } } Q ^ { \mathrm { c } } R ^ { \mathrm { d } } \right)
C) lnW=lnalnPlnQlnR\ln W = \ln a \cdot \ln P \cdot \ln Q \cdot \ln R
D) lnW=lna+blnP+clnQ+dlnR\ln W = \ln a + b \ln P + c \ln Q + d \ln R

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions