Solved

Use the Change-Of-Base Formula to Rewrite the Logarithm as a Ratio

Question 206

Multiple Choice

Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.

F(x) = log4 x


A) f(x) = log x + log 4 = ln x + ln 4  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.  F(x)  = log<sub>4</sub> x  A) f(x)  = log x + log 4 = ln x + ln 4   B)   f ( x )  = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)   f ( x )  = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)   f ( x )  = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)   f ( x )  = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }
B) f(x) =log4logx=ln4lnxf ( x ) = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.  F(x)  = log<sub>4</sub> x  A) f(x)  = log x + log 4 = ln x + ln 4   B)   f ( x )  = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)   f ( x )  = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)   f ( x )  = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)   f ( x )  = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }
C) f(x) =logx4=lnx4f ( x ) = \log \frac { x } { 4 } = \ln \frac { x } { 4 }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.  F(x)  = log<sub>4</sub> x  A) f(x)  = log x + log 4 = ln x + ln 4   B)   f ( x )  = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)   f ( x )  = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)   f ( x )  = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)   f ( x )  = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }
D) f(x) =log4x=ln4xf ( x ) = \log \frac { 4 } { x } = \ln \frac { 4 } { x }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.  F(x)  = log<sub>4</sub> x  A) f(x)  = log x + log 4 = ln x + ln 4   B)   f ( x )  = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)   f ( x )  = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)   f ( x )  = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)   f ( x )  = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }
E) f(x) =logxlog4=lnxln4f ( x ) = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }  Use the change-of-base formula to rewrite the logarithm as a ratio of logarithms.Then use a graphing utility to graph the ratio.  F(x)  = log<sub>4</sub> x  A) f(x)  = log x + log 4 = ln x + ln 4   B)   f ( x )  = \frac { \log 4 } { \log x } = \frac { \ln 4 } { \ln x }    C)   f ( x )  = \log \frac { x } { 4 } = \ln \frac { x } { 4 }    D)   f ( x )  = \log \frac { 4 } { x } = \ln \frac { 4 } { x }    E)   f ( x )  = \frac { \log x } { \log 4 } = \frac { \ln x } { \ln 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions