Solved

Evaluate (If Possible) the Sine, Cosec, and Tangent of the Real

Question 37

Multiple Choice

Evaluate (if possible) the sine, cosec, and tangent of the real number. t=8πt = - 8 \pi


A) t=8πt = - 8 \pi corresponds to the point (x,y) =(1,0) ( x , y ) = ( 1,0 ) . sin(8π) =0csc(8π)  is undefined tan(8π) =0\begin{array} { l } \sin ( - 8 \pi ) = 0 \\\csc ( - 8 \pi ) \text { is undefined } \\\tan ( - 8 \pi ) = 0\end{array}
B) t=8πt = - 8 \pi corresponds to the point (x,y) =(0,1) ( x , y ) = ( 0,1 ) . sin(8π) =0csc(8π) =0tan(8π)  is undefined \begin{array} { l } \sin ( - 8 \pi ) = 0 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
C) t=8πt = - 8 \pi corresponds to the point (x,y) =(1,0) ( x , y ) = ( 1,0 ) . sin(8π) =1csc(8π) =0tan(8π)  is undefined \begin{array} { l } \sin ( - 8 \pi ) = 1 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
D) t=8πt = - 8 \pi corresponds to the point (x,y) =(0,1) ( x , y ) = ( 0,1 ) . sin(8π) =1csc(8π) =0tan(8π)  is undefined \begin{array} { l } \sin ( - 8 \pi ) = 1 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
E) Not possible

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions