Solved

Use a Graphing Utility to Determine Which of the Trigonometric cscxsinxcotx\frac { \csc x - \sin x } { \cot x }

Question 25

Multiple Choice

Use a graphing utility to determine which of the trigonometric functions is equal to the following expression. cscxsinxcotx\frac { \csc x - \sin x } { \cot x }


A) y = cos x2- 2  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A)  y = cos x2- 2    2    X _ { \text {scl } } = \frac { \pi } { 2 }  - 2  B)  y = sin x2- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C)  y = csc x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 D)  y = cot x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E)  y = tan x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 2 Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 } - 2
B) y = sin x2- 2  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A)  y = cos x2- 2    2    X _ { \text {scl } } = \frac { \pi } { 2 }  - 2  B)  y = sin x2- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C)  y = csc x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 D)  y = cot x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E)  y = tan x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 2 Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 } - 2
C) y = csc x4- 2  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A)  y = cos x2- 2    2    X _ { \text {scl } } = \frac { \pi } { 2 }  - 2  B)  y = sin x2- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C)  y = csc x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 D)  y = cot x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E)  y = tan x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 2 Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 } - 4
D) y = cot x4- 2  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A)  y = cos x2- 2    2    X _ { \text {scl } } = \frac { \pi } { 2 }  - 2  B)  y = sin x2- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C)  y = csc x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 D)  y = cot x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E)  y = tan x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 2 Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 } - 4
E) y = tan x4- 2  Use a graphing utility to determine which of the trigonometric functions is equal to the following expression.  \frac { \csc x - \sin x } { \cot x }  A)  y = cos x2- 2    2    X _ { \text {scl } } = \frac { \pi } { 2 }  - 2  B)  y = sin x2- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 2 C)  y = csc x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 D)  y = cot x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 E)  y = tan x4- 2    2   X _ { \text {scl } } = \frac { \pi } { 2 }  - 4 2 Xscl =π2X _ { \text {scl } } = \frac { \pi } { 2 } - 4

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions