Solved

Write the Complex Number in Trigonometric Form z=2(cos5π4isin5π4)z = \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } - i \sin \frac { 5 \pi } { 4 } \right)

Question 75

Multiple Choice

Write the complex number in trigonometric form.  Write the complex number in trigonometric form.      A)   z = \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } - i \sin \frac { 5 \pi } { 4 } \right)   B)    Z = 6 ( \cos \pi + i \sin \pi )   C)    Z = 6 \left( \cos \frac { \pi } { 2 } - i \sin \frac { \pi } { 2 } \right)   D)    Z = 6 \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } - i \sin \frac { 5 \pi } { 4 } \right)   E)    Z = 6 \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } + i \sin \frac { 5 \pi } { 4 } \right)


A) z=2(cos5π4isin5π4) z = \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } - i \sin \frac { 5 \pi } { 4 } \right)
B) Z=6(cosπ+isinπ) Z = 6 ( \cos \pi + i \sin \pi )
C) Z=6(cosπ2isinπ2) Z = 6 \left( \cos \frac { \pi } { 2 } - i \sin \frac { \pi } { 2 } \right)
D) Z=62(cos5π4isin5π4) Z = 6 \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } - i \sin \frac { 5 \pi } { 4 } \right)
E) Z=62(cos5π4+isin5π4) Z = 6 \sqrt { 2 } \left( \cos \frac { 5 \pi } { 4 } + i \sin \frac { 5 \pi } { 4 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions