Solved

Select the Graph of the Polar Equation Using Symmetry, Zeros r=2(1sinθ)r = 2 ( 1 - \sin \theta )

Question 267

Multiple Choice

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=2(1sinθ) r = 2 ( 1 - \sin \theta )


A) Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 2 ( 1 - \sin \theta )   A) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
B) Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 2 ( 1 - \sin \theta )   A) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
C) Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 2 ( 1 - \sin \theta )   A) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
D) Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 2 ( 1 - \sin \theta )   A) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
E) Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = 2 ( 1 - \sin \theta )   A) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l }  | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions