Solved

Select the Graph of the Polar Equation Using Symmetry, Zeros r=(1+sinθ)r = ( 1 + \sin \theta )

Question 452

Multiple Choice

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=(1+sinθ) r = ( 1 + \sin \theta )


A) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = ( 1 + \sin \theta )    A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
B) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = ( 1 + \sin \theta )    A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
C) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = ( 1 + \sin \theta )    A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
D) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = ( 1 + \sin \theta )    A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
E) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.   r = ( 1 + \sin \theta )    A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l }  | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions