Solved

Select the Correct Graph of the Polar Equation r=74r = \frac { 7 } { 4 }

Question 12

Multiple Choice

Select the correct graph of the polar equation.Describe your viewing window. r=74r = \frac { 7 } { 4 }


A)  Select the correct graph of the polar equation.Describe your viewing window.   r = \frac { 7 } { 4 }   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
B)  Select the correct graph of the polar equation.Describe your viewing window.   r = \frac { 7 } { 4 }   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
C)  Select the correct graph of the polar equation.Describe your viewing window.   r = \frac { 7 } { 4 }   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
D)  Select the correct graph of the polar equation.Describe your viewing window.   r = \frac { 7 } { 4 }   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}
E)  Select the correct graph of the polar equation.Describe your viewing window.   r = \frac { 7 } { 4 }   A)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  B)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  C)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  D)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array}  E)     \begin{array} { l }  \theta _ { \min } = 0 \\ \theta _ { \max } = 2 \pi \\ \theta _ { s t e p } = \pi / 24 \\ X _ { \min } = - 5 \\ X _ { \max } = 5 \\ X _ { s c l } = 1 \\ Y _ { \min } = - 5 \\ Y _ { \max } = 5 \\ Y _ { s c l } = 1 \end{array} θmin=0θmax=2πθstep=π/24Xmin=5Xmax=5Xscl=1Ymin=5Ymax=5Yscl=1\begin{array} { l } \theta _ { \min } = 0 \\\theta _ { \max } = 2 \pi \\\theta _ { s t e p } = \pi / 24 \\X _ { \min } = - 5 \\X _ { \max } = 5 \\X _ { s c l } = 1 \\Y _ { \min } = - 5 \\Y _ { \max } = 5 \\Y _ { s c l } = 1\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions