Solved

Select the Parametric Equations Matching with the Following Graph x=15(cosΘ+ΘsinΘ),y=15(sinΘΘcosΘ)x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta ) , y = \frac { 1 } { 5 } ( \sin \Theta - \Theta \cos \Theta )

Question 436

Multiple Choice

Select the parametric equations matching with the following graph.  Select the parametric equations matching with the following graph.     A) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta )  , y = \frac { 1 } { 5 } ( \sin \Theta - \Theta \cos \Theta )   B) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta )  , y = \frac { 1 } { 5 } ( \sin \Theta + \Theta \cos \Theta )   C) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \Theta )  , y = \frac { 1 } { 5 } ( \sin \Theta - \Theta \cos \Theta )   D) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \Theta )  , y = \frac { 1 } { 5 } ( \sin \Theta + \Theta \cos \Theta )   E) Involute of circle:  x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta )  , y = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \Theta )


A) Involute of circle: x=15(cosΘ+ΘsinΘ) ,y=15(sinΘΘcosΘ) x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta ) , y = \frac { 1 } { 5 } ( \sin \Theta - \Theta \cos \Theta )
B) Involute of circle: x=15(cosΘ+ΘsinΘ) ,y=15(sinΘ+ΘcosΘ) x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta ) , y = \frac { 1 } { 5 } ( \sin \Theta + \Theta \cos \Theta )
C) Involute of circle: x=15(cosΘΘsinΘ) ,y=15(sinΘΘcosΘ) x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \Theta ) , y = \frac { 1 } { 5 } ( \sin \Theta - \Theta \cos \Theta )
D) Involute of circle: x=15(cosΘΘsinΘ) ,y=15(sinΘ+ΘcosΘ) x = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \Theta ) , y = \frac { 1 } { 5 } ( \sin \Theta + \Theta \cos \Theta )
E) Involute of circle: x=15(cosΘ+ΘsinΘ) ,y=15(cosΘΘsinΘ) x = \frac { 1 } { 5 } ( \cos \Theta + \Theta \sin \Theta ) , y = \frac { 1 } { 5 } ( \cos \Theta - \Theta \sin \Theta )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions