Solved

Find the Standard Form of the Equation of the Hyperbola y=52x,y=52xy = \frac { 5 } { 2 } x , y = - \frac { 5 } { 2 } x

Question 148

Multiple Choice

Find the standard form of the equation of the hyperbola with the given characteristics.
vertices: (1, -2) , (5, -2)
Asymptotes: y=52x,y=52xy = \frac { 5 } { 2 } x , y = - \frac { 5 } { 2 } x


A) (y3) 24(x+2) 225=1\frac { ( y - 3 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 25 } = 1
B) (x3) 24+(y+2) 225=1\frac { ( x - 3 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
C) (x2) 24(y+2) 225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
D) (x3) 24(y+2) 225=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
E) (x2) 24(y+3) 225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions