Solved

Find the Standard Form of the Equation of the Ellipse (0,4)( 0,4 )

Question 147

Multiple Choice

Find the standard form of the equation of the ellipse with the given characteristics.
Center: (0,4) ( 0,4 ) ; a = 2c; Vertices: (8,8) ,(8,8) ( - 8,8 ) , ( 8,8 ) , where a - thr semimajor axis, b - semiminor axis and c2=a2b2c ^ { 2 } = a ^ { 2 } - b ^ { 2 } .


A) (x8) 264+(y8) 248=1\frac { ( x - 8 ) ^ { 2 } } { 64 } + \frac { ( y - 8 ) ^ { 2 } } { 48 } = 1
B) x264(y8) 248=1\frac { x ^ { 2 } } { 64 } - \frac { ( y - 8 ) ^ { 2 } } { 48 } = 1
C) x264(y+8) 248=1\frac { x ^ { 2 } } { 64 } - \frac { ( y + 8 ) ^ { 2 } } { 48 } = 1
D) x264+(y8) 248=1\frac { x ^ { 2 } } { 64 } + \frac { ( y - 8 ) ^ { 2 } } { 48 } = 1
E) (x8) 264+y248=1\frac { ( x - 8 ) ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions