Solved

Find U × V and Show That It Is Orthogonal

Question 147

Multiple Choice

Find u × v and show that it is orthogonal to both u and v. u=12i+6j+kv=i+5j6k\begin{array} { l } \mathbf { u } = 12 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } \\\mathbf { v } = \mathbf { i } + 5 \mathbf { j } - 6 \mathbf { k }\end{array}


A) u×v=73i41j41k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } - 41 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=73i41j+73k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } + 73 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=73i41j+54k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } + 54 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=41i+73j+54k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 41 \mathbf { i } + 73 \mathbf { j } + 54 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=41i+73j41k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 41 \mathbf { i } + 73 \mathbf { j } - 41 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions