Solved

Find the Area of the Parallelogram That Has the Vectors u=2kv=2i+2k\begin{array} { l } \mathbf { u } = 2 \mathbf { k } \\\mathbf { v } = 2 \mathbf { i } + 2 \mathbf { k }\end{array}

Question 50

Multiple Choice

Find the area of the parallelogram that has the vectors as adjacent sides. u=2kv=2i+2k\begin{array} { l } \mathbf { u } = 2 \mathbf { k } \\\mathbf { v } = 2 \mathbf { i } + 2 \mathbf { k }\end{array}


A)  Area =5 square units \text { Area } = 5 \text { square units }
B)  Area =7 square units \text { Area } = 7 \text { square units }
C)  Area =4 square units \text { Area } = 4 \text { square units }
D)  Area =8 square units \text { Area } = 8 \text { square units }
E)  Area =6 square units \text { Area } = 6 \text { square units }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions