Solved

Find U × V and Show That It Is Orthogonal u=(6,1,7)v=(5,5,1)\mathbf { u } = ( 6 , - 1,7 ) \quad \mathbf { v } = ( 5,5 , - 1 )

Question 48

Multiple Choice

Find u × v and show that it is orthogonal to both u and v. u=(6,1,7) v=(5,5,1) \mathbf { u } = ( 6 , - 1,7 ) \quad \mathbf { v } = ( 5,5 , - 1 )


A) u×v=(34,41,35) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 34,41,35 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=(34,41,35) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( - 34,41,35 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=(41,34,35) (u×v) u0(u×v) v0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 41,34,35 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } \neq 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } \neq 0\end{array}
D) u×v=(35,41,34) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( - 35,41,34 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=(41,41,35) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( - 41,41,35 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions