Solved

Find the Area of the Parallelogram That Has the Vectors u=i+3j+3kv=i+k\begin{array} { l } \mathbf { u } = \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k } \\\mathbf { v } = \mathbf { i } + \mathbf { k }\end{array}

Question 241

Multiple Choice

Find the area of the parallelogram that has the vectors as adjacent sides. u=i+3j+3kv=i+k\begin{array} { l } \mathbf { u } = \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k } \\\mathbf { v } = \mathbf { i } + \mathbf { k }\end{array}


A)  Area =22 square units \text { Area } = \sqrt { 22 } \text { square units }
B)  Area =13 square units \text { Area } = \sqrt { 13 } \text { square units }
C)  Area =17 square units \text { Area } = \sqrt { 17 } \text { square units }
D)  Area =14 square units \text { Area } = \sqrt { 14 } \text { square units }
E)  Area =23 square units \text { Area } = \sqrt { 23 } \text { square units }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions