Solved

Find U × V and Show That It Is Orthogonal u=(10,0,3)v=(10,0,0)\mathbf { u } = ( 10,0,3 ) \quad \mathbf { v } = ( 10,0,0 )

Question 242

Multiple Choice

Find u × v and show that it is orthogonal to both u and v. u=(10,0,3) v=(10,0,0) \mathbf { u } = ( 10,0,3 ) \quad \mathbf { v } = ( 10,0,0 )


A) u×v=(0,30,0) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 0,30,0 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=(0,30,0) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 0 , - 30,0 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=(0,30,0) (u×v) u0(u×v) v0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 0,30,0 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } \neq 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } \neq 0\end{array}
D) u×v=(30,0,0) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 30,0,0 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=(0,0,30) (u×v) u0(u×v) v0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 0,0,30 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } \neq 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } \neq 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions