Solved

Rewrite i=1n7i3n8\sum _ { i = 1 } ^ { n } \frac { 7 i ^ { 3 } } { n ^ { 8 } }

Question 206

Multiple Choice

Rewrite i=1n7i3n8\sum _ { i = 1 } ^ { n } \frac { 7 i ^ { 3 } } { n ^ { 8 } } as a rational function S(n) and find limnS(n) \lim _ { n \rightarrow \infty } S ( n ) .


A) S(n) =7(n+1) 24n6,limnS(n) =0S ( n ) = \frac { 7 ( n + 1 ) ^ { 2 } } { 4 n ^ { 6 } } , \lim _ { n \rightarrow \infty } S ( n ) = 0
B) S(n) =7n2(n+1) 24,limnS(n) =7S ( n ) = \frac { 7 n ^ { 2 } ( n + 1 ) ^ { 2 } } { 4 } , \lim _ { n \rightarrow \infty } S ( n ) = 7
C) S(n) =7(n+1) 24n6, the limit does not exist S ( n ) = \frac { 7 ( n + 1 ) ^ { 2 } } { 4 n ^ { 6 } } , \text { the limit does not exist }
D) S(n) =7(n+1) 24n2,limnS(n) =74S ( n ) = \frac { 7 ( n + 1 ) ^ { 2 } } { 4 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 7 } { 4 }
E) S(n) =n2(n+1) 228,limnS(n) =0S ( n ) = \frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 28 } , \lim _ { n \rightarrow \infty } S ( n ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions