Solved

Rewrite i=1n[3n+(4in2)](4in)\sum _ { i = 1 } ^ { n } \left[ \frac { 3 } { n } + \left( \frac { 4 i } { n ^ { 2 } } \right) \right] \left( \frac { 4 i } { n } \right)

Question 109

Multiple Choice

Rewrite i=1n[3n+(4in2) ](4in) \sum _ { i = 1 } ^ { n } \left[ \frac { 3 } { n } + \left( \frac { 4 i } { n ^ { 2 } } \right) \right] \left( \frac { 4 i } { n } \right) as a rational function S(n) and find limnS(n) \lim _ { n \rightarrow \infty } S ( n ) .


A) S(n) =2[9n(n+1) +4(n+1) (2n+1) ]3n2, limit dos not exist S ( n ) = \frac { 2 [ 9 n ( n + 1 ) + 4 ( n + 1 ) ( 2 n + 1 ) ] } { 3 n ^ { 2 } } \text {, limit dos not exist }
B) S(n) =2[9+4n]3n,limnS(n) =343S ( n ) = \frac { 2 [ 9 + 4 n ] } { 3 n } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 34 } { 3 }
C) S(n) =2[9n+4(n+1) ]3n2,limnS(n) =343S ( n ) = \frac { 2 [ 9 n + 4 ( n + 1 ) ] } { 3 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 34 } { 3 }
D) S(n) =2[9n(n+1) +4(n+1) (2n+1) ]3n2,limnS(n) =56S ( n ) = \frac { 2 [ 9 n ( n + 1 ) + 4 ( n + 1 ) ( 2 n + 1 ) ] } { 3 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 5 } { 6 }
E) S(n) =2[9n(n+1) +4(n+1) (2n+1) ]3n2,limnS(n) =343S ( n ) = \frac { 2 [ 9 n ( n + 1 ) + 4 ( n + 1 ) ( 2 n + 1 ) ] } { 3 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 34 } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions