Solved

Rewrite i=1n5i3n5\sum _ { i = 1 } ^ { n } \frac { 5 i ^ { 3 } } { n ^ { 5 } }

Question 101

Multiple Choice

Rewrite i=1n5i3n5\sum _ { i = 1 } ^ { n } \frac { 5 i ^ { 3 } } { n ^ { 5 } } as a rational function S(n) and find limnS(n) \lim_ { n \rightarrow \infty } S ( n ) .


A) S(n) =5(n+1) 24n2,limnS(n) =54S ( n ) = \frac { 5 ( n + 1 ) ^ { 2 } } { 4 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 5 } { 4 }
B) S(n) =5n2(n+1) 24,limnS(n) =5S ( n ) = \frac { 5 n ^ { 2 } ( n + 1 ) ^ { 2 } } { 4 } , \lim _ { n \rightarrow \infty } S ( n ) = 5
C) S(n) =n2(n+1) 220,limnS(n) =0S ( n ) = \frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 20 } , \lim _ { n \rightarrow \infty } S ( n ) = 0
D) S(n) =5(n+1) 24n3,limnS(n) =0S ( n ) = \frac { 5 ( n + 1 ) ^ { 2 } } { 4 n ^ { 3 } } , \lim _ { n \rightarrow \infty } S ( n ) = 0
E) S(n) =5(n+1) 24n3S ( n ) = \frac { 5 ( n + 1 ) ^ { 2 } } { 4 n ^ { 3 } } the limit does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions