Solved

Rewrite i=1n10i+10n2\sum _ { i = 1 } ^ { n } \frac { 10 i + 10 } { n ^ { 2 } }

Question 162

Multiple Choice

Rewrite i=1n10i+10n2\sum _ { i = 1 } ^ { n } \frac { 10 i + 10 } { n ^ { 2 } } as a rational function S(n) and find limnS(n) \lim_ { n \rightarrow \infty } S ( n ) .


A) S(n) =5(n+1) +10n,limnS(n) =0S ( n ) = \frac { 5 ( n + 1 ) + 10 } { n } , \lim _ { n \rightarrow \infty } S ( n ) = 0
B) S(n) =5(n+1) +10n,limnS(n) =5S ( n ) = \frac { 5 ( n + 1 ) + 10 } { n } , \lim _ { n \rightarrow \infty } S ( n ) = 5
C) S(n) =5(n+1) +10n,limnS(n) =10S ( n ) = \frac { 5 ( n + 1 ) + 10 } { n } , \lim _ { n \rightarrow \infty } S ( n ) = 10
D) S(n) =5(n+1) +10n2,limnS(n) =0S ( n ) = \frac { 5 ( n + 1 ) + 10 } { n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = 0
E) S(n) =5n(n+1) +10n2,limnS(n) =5S ( n ) = \frac { 5 n ( n + 1 ) + 10 } { n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = 5

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions