Solved

Select the Correct Graph for the Following Function Using a Graphing

Question 157

Multiple Choice

Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not. f(x) =sin5πxf ( x ) = \sin 5 \pi x , limx2f(x) \lim _ { x \rightarrow 2 } f ( x )


A)  Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not.  f ( x )  = \sin 5 \pi x  ,  \lim _ { x \rightarrow 2 } f ( x )   A)      \lim _ { x \rightarrow 2 } f ( x )  = - 2  B)      \lim _ { x \rightarrow 2 } f ( x )  = 5  C)     \lim _ { x \rightarrow 2 } f ( x )  = 2  D)      \lim _ { x \rightarrow 2 } f ( x )  = 0  E)      \lim _ { x \rightarrow 2 } f ( x )   does not exist  limx2f(x) =2\lim _ { x \rightarrow 2 } f ( x ) = - 2
B)  Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not.  f ( x )  = \sin 5 \pi x  ,  \lim _ { x \rightarrow 2 } f ( x )   A)      \lim _ { x \rightarrow 2 } f ( x )  = - 2  B)      \lim _ { x \rightarrow 2 } f ( x )  = 5  C)     \lim _ { x \rightarrow 2 } f ( x )  = 2  D)      \lim _ { x \rightarrow 2 } f ( x )  = 0  E)      \lim _ { x \rightarrow 2 } f ( x )   does not exist  limx2f(x) =5\lim _ { x \rightarrow 2 } f ( x ) = 5
C)  Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not.  f ( x )  = \sin 5 \pi x  ,  \lim _ { x \rightarrow 2 } f ( x )   A)      \lim _ { x \rightarrow 2 } f ( x )  = - 2  B)      \lim _ { x \rightarrow 2 } f ( x )  = 5  C)     \lim _ { x \rightarrow 2 } f ( x )  = 2  D)      \lim _ { x \rightarrow 2 } f ( x )  = 0  E)      \lim _ { x \rightarrow 2 } f ( x )   does not exist  limx2f(x) =2\lim _ { x \rightarrow 2 } f ( x ) = 2
D)  Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not.  f ( x )  = \sin 5 \pi x  ,  \lim _ { x \rightarrow 2 } f ( x )   A)      \lim _ { x \rightarrow 2 } f ( x )  = - 2  B)      \lim _ { x \rightarrow 2 } f ( x )  = 5  C)     \lim _ { x \rightarrow 2 } f ( x )  = 2  D)      \lim _ { x \rightarrow 2 } f ( x )  = 0  E)      \lim _ { x \rightarrow 2 } f ( x )   does not exist  limx2f(x) =0\lim _ { x \rightarrow 2 } f ( x ) = 0
E)  Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not.  f ( x )  = \sin 5 \pi x  ,  \lim _ { x \rightarrow 2 } f ( x )   A)      \lim _ { x \rightarrow 2 } f ( x )  = - 2  B)      \lim _ { x \rightarrow 2 } f ( x )  = 5  C)     \lim _ { x \rightarrow 2 } f ( x )  = 2  D)      \lim _ { x \rightarrow 2 } f ( x )  = 0  E)      \lim _ { x \rightarrow 2 } f ( x )   does not exist  limx2f(x) \lim _ { x \rightarrow 2 } f ( x ) does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions