Solved

Find the Limit of the Sequence (If It Exists) αn=2nn2+7\alpha _ { n } = \frac { 2 n } { n ^ { 2 } + 7 }

Question 256

Multiple Choice

Find the limit of the sequence (if it exists) . αn=2nn2+7\alpha _ { n } = \frac { 2 n } { n ^ { 2 } + 7 }


A) limnαn=0\lim_ { n \rightarrow \infty } \alpha _ { n } = 0
B) limnαn=2\lim_ { n \rightarrow \infty } \alpha _ { n } = 2
C) limnαn=7\lim_ { n \rightarrow \infty } \alpha _ { n } = 7
D) limnαn=2\lim_ { n \rightarrow \infty } \alpha _ { n } = - 2
E) does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions