Solved

Solve the Games with the Given Payoff Matrix P=[463435]P = \left[ \begin{array} { l l l } - 4 & - 6 & - 3 \\- 4 & - 3 & - 5\end{array} \right]

Question 51

Multiple Choice

Solve the games with the given payoff matrix.
P=[463435]P = \left[ \begin{array} { l l l } - 4 & - 6 & - 3 \\- 4 & - 3 & - 5\end{array} \right]


A) C=[0108159]C = \left[ \begin{array} { c } 0 \\\frac { 10 } { 81 } \\\frac { 5 } { 9 }\end{array} \right] , R=[108159]R = \left[ \begin{array} { l l } \frac { 10 } { 81 } & \frac { 5 } { 9 }\end{array} \right] , e=215e = - \frac { 21 } { 5 }
B) C=[25350]C = \left[ \begin{array} { l } \frac { 2 } { 5 } \\\frac { 3 } { 5 } \\0\end{array} \right] , R=[2535]R = \left[ \begin{array} { l l } \frac { 2 } { 5 } & \frac { 3 } { 5 }\end{array} \right] , e=215e = - \frac { 21 } { 5 }
C) C=[02535]C = \left[ \begin{array} { l } 0 \\\frac { 2 } { 5 } \\\frac { 3 } { 5 }\end{array} \right] , R=[2535]R = \left[ \begin{array} { l l } \frac { 2 } { 5 } & \frac { 3 } { 5 }\end{array} \right] , e=215e = \frac { 21 } { 5 }
D) C=[0108159]C = \left[ \begin{array} { c } 0 \\\frac { 10 } { 81 } \\\frac { 5 } { 9 }\end{array} \right] , R=[108159]R = \left[ \begin{array} { l l } \frac { 10 } { 81 } & \frac { 5 } { 9 }\end{array} \right] , e=215e = \frac { 21 } { 5 }
E) C=[02535]C = \left[ \begin{array} { l } 0 \\\frac { 2 } { 5 } \\\frac { 3 } { 5 }\end{array} \right] , R=[2535]R = \left[ \begin{array} { l l } \frac { 2 } { 5 } & \frac { 3 } { 5 }\end{array} \right] , e=215e = - \frac { 21 } { 5 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions