Solved

Translate the Given System of Equations into Matrix Form {x+yz=18x+y+z=33x4+z2=4}\left\{ \begin{array} { r } x + y - z = 1 \\8 x + y + z = 3 \\\frac { 3 x } { 4 } + \frac { z } { 2 } = 4\end{array} \right\}

Question 1

Multiple Choice

Translate the given system of equations into matrix form. {x+yz=18x+y+z=33x4+z2=4}\left\{ \begin{array} { r } x + y - z = 1 \\8 x + y + z = 3 \\\frac { 3 x } { 4 } + \frac { z } { 2 } = 4\end{array} \right\}


A) [41181134012][xyz]=[143]\left[ \begin{array} { c c c } 4 & 1 & - 1 \\8 & 1 & 1 \\\frac { 3 } { 4 } & 0 & \frac { 1 } { 2 }\end{array} \right] \cdot \left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } 1 \\4 \\3\end{array} \right]
B) [11181134012][xyz]=[431]\left[ \begin{array} { c c c } 1 & 1 & - 1 \\8 & 1 & 1 \\\frac { 3 } { 4 } & 0 & \frac { 1 } { 2 }\end{array} \right] \cdot \left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } 4 \\3 \\1\end{array} \right]
C) [11141138012][xyz]=[134]\left[ \begin{array} { c c c } 1 & 1 & - 1 \\4 & 1 & 1 \\\frac { 3 } { 8 } & 0 & \frac { 1 } { 2 }\end{array} \right] \cdot \left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } 1 \\3 \\4\end{array} \right]
D) [81111134012][xyz]=[134]\left[ \begin{array} { c c c } 8 & 1 & - 1 \\1 & 1 & 1 \\\frac { 3 } { 4 } & 0 & \frac { 1 } { 2 }\end{array} \right] \cdot \left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } 1 \\3 \\4\end{array} \right]
E) [11181134012][xyz]=[134]\left[ \begin{array} { c c c } 1 & 1 & - 1 \\8 & 1 & 1 \\\frac { 3 } { 4 } & 0 & \frac { 1 } { 2 }\end{array} \right] \cdot \left[ \begin{array} { l } x \\y \\z\end{array} \right] = \left[ \begin{array} { l } 1 \\3 \\4\end{array} \right]

Correct Answer:

verifed

Verified

Related Questions