Solved

Find the Derivative of the Function s(x)=(4x22x+2)tanxs ( x ) = \left( 4 x ^ { 2 } - 2 x + 2 \right) \tan x

Question 44

Multiple Choice

Find the derivative of the function. s(x) =(4x22x+2) tanxs ( x ) = \left( 4 x ^ { 2 } - 2 x + 2 \right) \tan x


A) s(x) =(8x2) tanx+(4x22x2) sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x - 2 \right) \sec ^ { 2 } x
B) s(x) =(8x2) tanx+(4x22x+2) secxs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec x
C) s(x) =(8x2) tanx+(4x2+2x+2) sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } + 2 x + 2 \right) \sec ^ { 2 } x
D) s(x) =(8x2) tanx+(4x22x+2) sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec ^ { 2 } x
E) s(x) =(8x2) tanx(4x22x+2) sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x - \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec ^ { 2 } x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions