Solved

Use the Conversion Formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right)

Question 43

Multiple Choice

Use the conversion formula cosx=sin(π2x) \cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression f(t) =5.2cos(6πt) +10f ( t ) = 5.2 \cos ( 6 \pi t ) + 10
By a sine function.


A) f(t) =5.2sin(π26πt) +10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 10
B) f(t) =5.2sin(π6πt2) +10f ( t ) = 5.2 \sin \left( \frac { \pi - 6 \pi t } { 2 } \right) + 10
C) f(t) =5.2sin(π26t) +10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 t \right) + 10
D) f(t) =6sin(π25.2πt) +10f ( t ) = 6 \sin \left( \frac { \pi } { 2 } - 5.2 \pi t \right) + 10
E) f(t) =10sin(π26πt) +5.2f ( t ) = 10 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 5.2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions