Solved

Use the Conversion Formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right)

Question 38

Multiple Choice

Use the conversion formula cosx=sin(π2x) \cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression g(x) =25cos[2π(3x1) ]+9g ( x ) = 25 \cos [ 2 \pi ( 3 x - 1 ) ] + 9
By a sine function.


A) g(x) =25sin(6πx+5π2) 9+π2g ( x ) = 25 \sin \left( 6 \pi x + \frac { 5 \pi } { 2 } \right) - 9 + \frac { \pi } { 2 }
B) g(x) =25sin(6πx5π2) +9g ( x ) = 25 \sin \left( 6 \pi x - \frac { 5 \pi } { 2 } \right) + 9
C) g(x) =25sin(6πx5π2) +9g ( x ) = 25 \sin \left( - 6 \pi x - \frac { 5 \pi } { 2 } \right) + 9
D) g(x) =25sin(6πx+5π2) +9g ( x ) = 25 \sin \left( - 6 \pi x + \frac { 5 \pi } { 2 } \right) + 9
E) g(x) =25sin(12πx+3π2) +9g ( x ) = 25 \sin \left( 12 \pi x + \frac { 3 \pi } { 2 } \right) + 9

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions