Solved

Use the Addition Formulas To Express tan(x+23π)\tan ( x + 23 \pi )

Question 58

Multiple Choice

Use the addition formulas: sin(x+y) =sinxcosy+cosxsinysin(xy) =sinxcosycosxsinycos(x+y) =cosxcosysinxsinycos(xy) =cosxcosy+sinxsiny\begin{array} { l } \sin ( x + y ) = \sin x \cdot \cos y + \cos x \cdot \sin y \\\sin ( x - y ) = \sin x \cdot \cos y - \cos x \cdot \sin y \\\cos ( x + y ) = \cos x \cdot \cos y - \sin x \cdot \sin y \\\cos ( x - y ) = \cos x \cdot \cos y + \sin x \cdot \sin y\end{array}
To express tan(x+23π) \tan ( x + 23 \pi ) in terms of tan(x) \tan ( x ) .


A) tan(x) 23π\frac { \tan ( x ) } { 23 \pi }
B) tan(x) +23π\tan ( x ) + 23 \pi
C) 23πtan(x) 23 \pi \tan ( x )
D) tan(x) \tan ( x )
E) tan(x) 23π\tan ( x ) - 23 \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions