Solved

Use Logarithmic Differentiation to Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x }

Question 97

Multiple Choice

Use logarithmic differentiation to find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . Do not simplify the result. y=(5x+1) (7x1) y = ( 5 x + 1 ) ( 7 x - 1 )


A) dydx=(5x+1) (7x1) (55x+1+77x1) \frac { d y } { d x } = ( 5 x + 1 ) ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
B) dy dx=(55x+1+77x1) \frac { \mathrm { d } y } { \mathrm {~d} x } = \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
C) dy dx=(5x+1) (7x1) (55x+1+77x1) 2\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 5 x + 1 ) ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right) ^ { 2 }
D) dy dx=(7x1) (55x+1+77x1) \frac { \mathrm { d } y } { \mathrm {~d} x } = ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
E) dy dx=(5x+1) (55x+1+77x1) \frac { \mathrm { d } y } { \mathrm {~d} x } = ( 5 x + 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions