Solved

Find the Indicated Derivative y=5x+9xy = 5 \sqrt { x } + \frac { 9 } { \sqrt { x } }

Question 77

Multiple Choice

Find the indicated derivative. ? y=5x+9xy = 5 \sqrt { x } + \frac { 9 } { \sqrt { x } } , x=4x = 4 when t=1t = 1 , dx dtt=1=5\left. \frac { \mathrm { d } x } { \mathrm {~d} t } \right| _ { t = 1 } = 5 ; dy dtt=1=\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } =
Please round the answer to the nearest hundredth.


A) dy dtt=1=3.44\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 3.44
B) dy dtt=1=34.38\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 34.38
C) dy dtt=1=11.88\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 11.88
D) dy dtt=1=0.69\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 0.69
E) dy dtt=1=6.88\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 6.88

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions