Solved

Let X1,,X8X _ { 1 } , \ldots \ldots , X _ { 8 }

Question 1

Short Answer

Let X1,,X8X _ { 1 } , \ldots \ldots , X _ { 8 } be a random sample from a normal distribution with variance σ12, and let Y1,,Y10\sigma _ { 1 } ^ { 2 } \text {, and let } Y _ { 1 } , \ldots \ldots , Y _ { 10 } be another random sample (independent of the X2s)\left. X _ { 2 } ^ { \prime } s \right) from a normal distribution with variance σ12, and let S12 and S22\sigma _ { 1 } ^ { 2 } \text {, and let } S _ { 1 } ^ { 2 } \text { and } S _ { 2 } ^ { 2 } denote the two sample variances. Then the random variable F=(S12/σ12)(S12/σ12)F = \left( S _ { 1 } ^ { 2 } / \sigma _ { 1 } ^ { 2 } \right) \left( S _ { 1 } ^ { 2 } / \sigma _ { 1 } ^ { 2 } \right) has an F distribution with v1=v _ { 1 } =\underline{\quad\quad} and v2=v _ { 2 } =\underline{\quad\quad}

Correct Answer:

verifed

Verified

Related Questions