Solved

Let X1,X2, and X3X _ { 1 } , X _ { 2 } \text {, and } X _ { 3 }

Question 1

Essay

Let X1,X2, and X3X _ { 1 } , X _ { 2 } \text {, and } X _ { 3 } represent the times necessary to perform three successive repair tasks at a certain service facility. Suppose they are independent normal random variables with expected values μ1,μ1, and μ3 and variances σ12,σ12, and σ32\mu _ { 1 } , \mu _ { 1 } \text {, and } \mu _ { 3 } \text { and variances } \sigma _ { 1 } ^ { 2 } , \sigma _ { 1 } ^ { 2 } \text {, and } \sigma _ { 3 } ^ { 2 } \text {, } respectively.
a. If μ=μ2=μ3=65 and σ12=σ22=σ32=20\mu = \mu _ { 2 } = \mu _ { 3 } = 65 \text { and } \sigma _ { 1 } ^ { 2 } = \sigma_ { 2 } ^ { 2 } = \sigma_ { 3 } ^ { 2 } = 20 \text {, }

Calculate P(X1+X2+X3210)P \left( X _ { 1 } + X _ { 2 } + X _ { 3 } \leq 210 \right)
What is P(150X1+X2+X3210)?P \left( 150 \leq X _ { 1 } + X _ { 2 } + X _ { 3 } \leq 210 \right) ?
b. Using the μ2s and σ2s\mu _ { 2 } ^ { \prime } s \text { and } \sigma _ { 2 } ^ { \prime } s
given in part (a), calculate P(Xˉ59) and P(62Xˉ68)P ( \bar { X } \geq 59 ) \text { and } P ( 62 \leq \bar { X } \leq 68 )
c. Using the μ2s and σ2s\mu _ { 2 } ^ { \prime } s \text { and } \sigma _ { 2 } ^ { \prime } s
given in part (a), calculate P(10X1.5X2.5X35)P \left( - 10 \leq X _ { 1 } - .5 \mathrm { X } _ { 2 } - .5 X _ { 3 } \leq 5 \right)
d. If μ1=40,μ2=50,μ3=60,σ12=10,σ22=12, and σ32=14\mu _ { 1 } = 40 , \mu _ { 2 } = 50 , \mu _ { 3 } = 60 , \sigma _ { 1 } ^ { 2 } = 10 , \sigma _ { 2 } ^ { 2 } = 12 \text {, and } { \sigma_ { 3 } ^ { 2 } }= 14 \text {, }
calculate P(X1+X2+X3160) and P(X1+X22X3)P \left( X _ { 1 } + X _ { 2 } + X _ { 3 } \leq 160 \right) \text { and } P \left( X _ { 1 } + X _ { 2 } \geq 2 X _ { 3 } \right)

Correct Answer:

verifed

Verified

Related Questions