Solved

Use a Short Form Truth Table to Answer the Following

Question 25

Multiple Choice

Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? (HA) IIW(HA) W\begin{array} { l } ( \mathrm { H } \bullet \sim A ) \supset \mathrm { I } \\\mathrm { I } \supset \mathrm { W } \\( \mathrm { H } \bullet \mathrm { A } ) \supset \sim \mathrm { W }\end{array}


A) H: T A: T I: T W: T
B) H: T A: T I: F W: F
C) H: T A: F I: T W: T
D) H: F A: F I: T W: F
E) None-the argument is valid.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions