Solved

Use a Short Form Truth Table to Answer the Following

Question 30

Multiple Choice

Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? IBIPG(BP) G\begin{array} { l } \mathrm { I } \supset \sim \mathrm { B } \\\sim \mathrm { I } \supset \sim \mathrm { P } \\\mathrm { G } \supset ( \mathrm { B } \cdot \mathrm { P } ) \\\sim \mathrm { G }\end{array}


A) I: T B: T P: T G: T
B) I: T B: T P: T G: F
C) I: F B: T P: T G: F
D) I: F B: F P: F G: F
E) None-the argument is valid.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions