Solved

Let F=x(1+z)i+7y(1+z)j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j }

Question 7

Multiple Choice

Let F=x(1+z) i+7y(1+z) j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j } Show that the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward can also be written as the surface z=x2+y2,1z2z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 2 . Which of the following iterated integrals calculates the flux of F\vec { F } across S? Select all that apply.


A) T(x2+7y2(1+x2+y2) x2+y2dxdy\int _ { T } \frac { \left( x ^ { 2 } + 7 y ^ { 2 } \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) \right. } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
B) 02π12r2(1+r) drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) d r d \theta
C) 02π12r2(1+r) ndθdr\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) n d \theta d r
D) 02π12r2(1+r) (cos2θ+bsin2θ) drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) \left( \cos ^ { 2 } \theta + b \sin ^ { 2 } \theta \right) d r d \theta
E) T(x2+y2) (1+x2+y2) x2+y2dxdy- \int _ { T } \frac { \left( x ^ { 2 } + y ^ { 2 } \right) \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions