Solved

(A)Is F=F1(y,z)i+F2(x,z)j+F3(x,y)k\vec { F } = F _ { 1 } ( y , z ) \vec { i } + F _ { 2 } ( x , z ) \vec { j } + F _ { 3 } ( x , y ) \vec { k }

Question 72

Short Answer

(a)Is F=F1(y,z)i+F2(x,z)j+F3(x,y)k\vec { F } = F _ { 1 } ( y , z ) \vec { i } + F _ { 2 } ( x , z ) \vec { j } + F _ { 3 } ( x , y ) \vec { k } a divergence free vector field?
(b)Do all divergence free vector fields have the form of the vector field in (a)?
(c)If F\vec { F } has the form given in (a)can we conclude that SFdA=0\int _ { S } \vec { F } \cdot \vec { d A } = 0 for any closed surface S?

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions