Solved

Let a=α1i+α2j+α3k\vec { a } = \alpha _ { 1 } \vec { i } + \alpha _ { 2 } \vec { j } + \alpha _ { 3 } \vec { k }

Question 74

Multiple Choice

Let a=α1i+α2j+α3k\vec { a } = \alpha _ { 1 } \vec { i } + \alpha _ { 2 } \vec { j } + \alpha _ { 3 } \vec { k } be a nonzero constant vector and let r=xi+yj+zk\vec { r } = x \vec { i } + y \vec { j } + z \vec { k } .Suppose S is the sphere of radius one centered at the origin.There are two (related) reasons why S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 .Select them both.


A) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because a×r=0\vec { a } \times \vec { r } = \overrightarrow { 0 } .
B) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because div(a×r) =0\operatorname { div } ( \vec { a } \times \vec { r } ) = 0 .
C) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because r\vec { r } is parallel to the
dAd \vec { A } element everywhere on S and so
a×r\vec { a } \times \vec { r } is perpendicular to
dAd \vec { A } on S.
D) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because a×r\vec { a } \times \vec { r } is a constant vector field.
E) S(a×r) dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 because H(a×r) dA=Q>0\int _ { H } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = Q > 0 and
L(a×r) dA=Q\int _ { L } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = - Q , where H is the upper unit hemisphere and L is the lower unit hemisphere.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions