Solved

Suppose That Curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k }

Question 35

Essay

Suppose that curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k } curl F(0,2,1)=6i+2j+5k\vec { F } ( 0,2,1 ) = 6 \vec { i } + 2 \vec { j } + 5 \vec { k } and curl F(1,3,1)=3i+2j+10k { \vec { F } } ( 1,3 , - 1 ) = - 3 \vec { i } + 2 \vec { j } + 10 \vec { k } Estimate the following line integrals.
(a) C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } where C1 is given by r(t)=i+(3+0.1cost)j+(0.1sint1)k,0t2π\vec { r } ( t ) = \vec { i } + ( 3 + 0.1 \cos t ) \vec { j } + ( 0.1 \sin t - 1 ) \vec { k } , \quad 0 \leq t \leq 2 \pi (b) c2Fdr\int _ { c _ { 2 } } \vec { F } \cdot d \vec { r } where C2 is given by r(t)=0.1sinti+2j+(1+0.1cost)k,0t2π\vec { r } ( t ) = 0.1 \sin t \vec { i } + 2 \vec { j } + ( 1 + 0.1 \cos t ) \vec { k } , 0 \leq t \leq 2 \pi (c) C3Fdr\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } where C3 is given by r(t)=(1+0.1cost)i+(2+0.1sint)j+k,0t2π\vec { r } ( t ) = ( 1 + 0.1 \cos t ) \vec { i } + ( 2 + 0.1 \sin t ) \vec { j } + \vec { k } , \quad 0 \leq t \leq 2 \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions