Solved

Let a=a1i+α2i+α3i\vec { a } = a _ { 1 } \vec { i } + \alpha _ { 2 } \vec { i } + \alpha _ { 3 } \vec { i }

Question 40

Multiple Choice

Let a=a1i+α2i+α3i\vec { a } = a _ { 1 } \vec { i } + \alpha _ { 2 } \vec { i } + \alpha _ { 3 } \vec { i } be a constant vector and f(x, y, z) be a smooth function.Which statement is true?


A) If divfa\operatorname { div } f \vec { a } is a divergence free vector field then \nabla f is parallel to
α\vec { \alpha }
B) If divfa\operatorname { div } f \vec { a } is not a divergence free vector field then \nabla f is perpendicular to
α\vec { \alpha }
C) If divfa\operatorname { div } f \vec { a } is a divergence free vector field then \nabla f is perpendicular to
α\vec { \alpha }
D) If divfa\operatorname { div } f \vec { a } is not a divergence free vector field then \nabla f is parallel to
α\vec { \alpha }
E) If divfa\operatorname { div } f \vec { a } is a divergence free vector field then \nabla f is constant.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions