Solved

State Stokes' Theorem CFdr=ScurlFdA\int _ { C } \vec { F } \cdot \vec { d r } = \int _ { S } \operatorname { curl } \vec { F } \cdot \vec { d A }

Question 46

Multiple Choice

State Stokes' Theorem.


A) If S is a smooth oriented surface with smooth, oriented boundary C, then CFdr=ScurlFdA\int _ { C } \vec { F } \cdot \vec { d r } = \int _ { S } \operatorname { curl } \vec { F } \cdot \vec { d A }
B) If S is a smooth oriented surface with piecewise smooth, oriented boundary C, then SFdr=CcurlFdA\int _ { S } \vec { F } \cdot \vec { d r } = \int _ { C } \operatorname { curl } \vec { F } \cdot \vec { d A }
C) If S is a smooth oriented surface with piecewise smooth, oriented boundary C, then CFdr=ScurFdV\int _ { C } \vec { F } \cdot \vec { d r } = \int _ { S } \operatorname { cur } \vec { F } d V
D) If S is a smooth oriented surface with piecewise smooth, oriented boundary C, and if F\vec { F } is a smooth vector field on an open region containing S and C, then
CFdr=ScurlFdA\int _ { C } \vec { F } \cdot \vec{ d r } = \int _ { S } \operatorname { curl } \vec { F } \cdot \vec { d A }
E) If S is a smooth oriented surface with piecewise smooth, oriented boundary C, then CFdr=SdivFdV\int _ { C } { \vec { F } } \cdot \vec { d r } = \int _ { S } d i v { \vec { F } } d V

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions