Solved

Let Use the Divergence Theorem to Calculate SFdA\int _ { S } { \vec { F } } \cdot \vec { d A }

Question 45

Short Answer

Let F=x(x2+2y2+4z2)3/2i+y(x2+2y2+4z2)3/2j+z(x2+2y2+4z2)3/2k\vec { F } = \frac { x } { \left( x ^ { 2 } + 2 y ^ { 2 } + 4 z ^ { 2 } \right) ^ { 3 / 2 } } \vec { i } + \frac { y } { \left( x ^ { 2 } + 2 y ^ { 2 } + 4 z ^ { 2 } \right) ^ { 3 / 2 } } \vec { j } + \frac { z } { \left( x ^ { 2 } + 2 y ^ { 2 } + 4 z ^ { 2 } \right) ^ { 3 / 2 } } \vec { k } Use the Divergence Theorem to calculate SFdA\int _ { S } { \vec { F } } \cdot \vec { d A } where S is the sphere of radius 33 a centered at the point ( 44 a, 0, 0).

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions