Solved

Let F=4z3yi+(4x+4z3x)j+(x2+12z2xy)k\vec { F } = 4 z ^ { 3 } y \vec { i } + \left( 4 x + 4 z ^ { 3 } x \right) \vec { j } + \left( x ^ { 2 } + 12 z ^ { 2 } x y \right) \vec { k }

Question 81

Essay

Let F=4z3yi+(4x+4z3x)j+(x2+12z2xy)k\vec { F } = 4 z ^ { 3 } y \vec { i } + \left( 4 x + 4 z ^ { 3 } x \right) \vec { j } + \left( x ^ { 2 } + 12 z ^ { 2 } x y \right) \vec { k } (a)Evaluate the line integral Q^F×dr\hat { \mathrm { Q } } { \vec { F } \times d \vec { r } } , where C is the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 on the xy-plane, oriented in a counter-clockwise direction when viewed from above.
(b)Without any computation, explain why the answer in part (a)is also equal to the flux integral Q1˙curlF×dA\dot {\mathrm { Q } _ { 1 } }\operatorname { curl } \vec { F } \times \vec { d { A } } where S1 is lower hemisphere x2+y2+z2=1,z£0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 , z £ 0 oriented inward.

Correct Answer:

verifed

Verified

(a)The orientation of C is determined fo...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions