Solved

Let F\vec { F } Be a Constant Vector Field With F=ai+bj+ck { \vec { F } } = a \vec { i } + b \vec { j } + c \vec { k }

Question 43

Essay

Let F\vec { F } be a constant vector field with F=ai+bj+ck { \vec { F } } = a \vec { i } + b \vec { j } + c \vec { k } , where a, b, c are constants satisfying the condition a2+b2+c2=1a ^ { 2 } + b ^ { 2 } + c ^ { 2 } = 1 .Let S be a surface lying on the plane x + 4y - 5z = 10 oriented upward.
If the surface area of S is 10, what is the smallest possible value of SFdA\int _ { S } \vec { F } \cdot \vec { d A } , and what are the corresponding values of a, b, c?

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions