Solved

Evaluate cxi+(y+10x)j+(z+9x)kdr\int _ { - c } x \vec { i } + ( y + 10 x ) \vec { j } + ( z + 9 x ) \vec { k } \cdot \overrightarrow { d r }

Question 64

Short Answer

Evaluate cxi+(y+10x)j+(z+9x)kdr\int _ { - c } x \vec { i } + ( y + 10 x ) \vec { j } + ( z + 9 x ) \vec { k } \cdot \overrightarrow { d r } , where C is the curve r(t)=ti+(1t)j+(t2+3)k\vec { r } ( t ) = t \vec { i } + ( 1 - t ) \vec { j } + \left( t ^ { 2 } + 3 \right) \vec { k } for 0 \le t \le 1.
Note that the line integral is around -C, not C.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions