Solved

Let F=(4x+5y)i+(4x4y)j\vec { F } = ( 4 x + 5 y ) \vec { i } + ( 4 x - 4 y ) \vec { j }

Question 47

Essay

Let F=(4x+5y)i+(4x4y)j\vec { F } = ( 4 x + 5 y ) \vec { i } + ( 4 x - 4 y ) \vec { j } Let I1=C1FˉdrI _ { 1 } = \int _ { C _ { 1 } } \bar { F } \cdot \overline { d r } , where C1 is the line from (0, 0)to (2, 2).
Let I2=c2FdrI_{2}=\int_{c_{2}} \vec{F} \cdot \overrightarrow{d r} , where C2 is parameterized by r(t)=ti+12t2j,0t2\vec { r } ( t ) = t \vec { i } + \frac { 1 } { 2 } t ^ { 2 } \vec { j } , \quad 0 \leq t \leq 2 Notice that both C1 and C2 go from (0, 0)to (2, 2), but is I1=I2?I _ { 1 } = I _ { 2 } ? Explain.

Correct Answer:

verifed

Verified

No.
Even though the curves C1 and C2 have ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions